Bandurin, D. A. et al. Negative local resistance caused by viscous electron backflow in graphene. Science 351, 1055–1058 (2016).
Google Scholar
Levin, A. D., Gusev, G. M., Levinson, E. V., Kvon, Z. D. & Bakarov, A. K. Vorticity-induced negative nonlocal resistance in a viscous two-dimensional electron system. Phys. Rev. B 97, 245308 (2018).
Google Scholar
Bandurin, D. A. et al. Fluidity onset in graphene. Nat. Commun. 9, 4533 (2018).
Google Scholar
Gupta, A. et al. Hydrodynamic and ballistic transport over large length scales in GaAs/AlGaAs. Phys. Rev. Lett. 126, 076803 (2021).
Google Scholar
Krishna Kumar, R. et al. Superballistic flow of viscous electron fluid through graphene constrictions. Nat. Phys. 13, 1182–1185 (2017).
Google Scholar
Ginzburg, L. V. et al. Superballistic electron flow through a point contact in a Ga[Al]As heterostructure. Phys. Rev. Res. 3, 023033 (2021).
Google Scholar
Kumar, C. et al. Imaging hydrodynamic electrons flowing without Landauer–Sharvin resistance. Preprint at https://doi.org/10.48550/arXiv.2111.06412 (2021).
Sulpizio, J. A. et al. Visualizing Poiseuille flow of hydrodynamic electrons. Nature 576, 75–79 (2019).
Google Scholar
Ku, M. J. H. et al. Imaging viscous flow of the Dirac fluid in graphene. Nature 583, 537–541 (2020).
Google Scholar
Vool, U. et al. Imaging phonon-mediated hydrodynamic flow in WTe2. Nat. Phys. 17, 1216–1220 (2021).
Google Scholar
Crossno, J. et al. Observation of the Dirac fluid and the breakdown of the Wiedemann–Franz law in graphene. Science 351, 1058–1061 (2016).
Google Scholar
Vasyukov, D. et al. A scanning superconducting quantum interference device with single electron spin sensitivity. Nat. Nanotechnol. 8, 639–644 (2013).
Google Scholar
Gurzhi, R. N. Hydrodynamic effects in solids at low temperature. Sov. Phys. Usp. 11, 255–270 (1968).
Google Scholar
Landau, L. D. & Lifshitz, E. M. Fluid Mechanics (Elsevier, 1987).
Mayzel, J., Steinberg, V. & Varshney, A. Stokes flow analogous to viscous electron current in graphene. Nat. Commun. 10, 937 (2019).
Google Scholar
Molenkamp, L. W. & de Jong, M. J. M. Observation of Knudsen and Gurzhi transport regimes in a two-dimensional wire. Solid State Electron. 37, 551–553 (1994).
Google Scholar
de Jong, M. J. M. & Molenkamp, L. W. Hydrodynamic electron flow in high-mobility wires. Phys. Rev. B 51, 13389–13402 (1995).
Google Scholar
Taubert, D. et al. An electron jet pump: the Venturi effect of a Fermi liquid. J. Appl. Phys. 109, 102412 (2011).
Google Scholar
Moll, P. J. W., Kushwaha, P., Nandi, N., Schmidt, B. & Mackenzie, A. P. Evidence for hydrodynamic electron flow in PdCoO2. Science 351, 1061–1064 (2016).
Google Scholar
Braem, B. A. et al. Scanning gate microscopy in a viscous electron fluid. Phys. Rev. B 98, 241304 (2018).
Google Scholar
Gusev, G. M., Jaroshevich, A. S., Levin, A. D., Kvon, Z. D. & Bakarov, A. K. Stokes flow around an obstacle in viscous two-dimensional electron liquid. Sci. Rep. 10, 7860 (2020).
Google Scholar
Raichev, O. E., Gusev, G. M., Levin, A. D. & Bakarov, A. K. Manifestations of classical size effect and electronic viscosity in the magnetoresistance of narrow two-dimensional conductors: theory and experiment. Phys. Rev. B 101, 235314 (2020).
Google Scholar
Gusev, G. M., Jaroshevich, A. S., Levin, A. D., Kvon, Z. D. & Bakarov, A. K. Viscous magnetotransport and Gurzhi effect in bilayer electron system. Phys. Rev. B 103, 075303 (2021).
Google Scholar
Krebs, Z. J. et al. Imaging the breaking of electrostatic dams in graphene for ballistic and viscous fluids. Preprint at https://doi.org/10.48550/arXiv.2106.07212 (2021).
Samaddar, S. et al. Evidence for local spots of viscous electron flow in graphene at moderate mobility. Nano Lett. 21, 9365–9373 (2021).
Google Scholar
Govorov, A. O. & Heremans, J. J. Hydrodynamic effects in interacting Fermi electron jets. Phys. Rev. Lett. 92, 026803 (2004).
Google Scholar
Di Sante, D. et al. Turbulent hydrodynamics in strongly correlated Kagome metals. Nat. Commun. 11, 3997 (2020).
Google Scholar
Huang, Y. & Wang, M. Nonnegative magnetoresistance in hydrodynamic regime of electron fluid transport in two-dimensional materials. Phys. Rev. B 104, 155408 (2021).
Google Scholar
Hui, A., Oganesyan, V. & Kim, E. Beyond Ohm’s law: Bernoulli effect and streaming in electron hydrodynamics. Phys. Rev. B 103, 235152 (2021).
Google Scholar
Narozhny, B. N., Gornyi, I. V. & Titov, M. Anti-Poiseuille flow in neutral graphene. Phys. Rev. B 104, 075443 (2021).
Google Scholar
Tavakol, O. & Kim, Y. B. Artificial electric field and electron hydrodynamics. Phys. Rev. Res. 3, 013290 (2021).
Google Scholar
Zhang, G., Kachorovskii, V., Tikhonov, K. & Gornyi, I. Heating of inhomogeneous electron flow in the hydrodynamic regime. Phys. Rev. B 104, 075417 (2021).
Google Scholar
Li, S., Khodas, M. & Levchenko, A. Conformal maps of viscous electron flow in the Gurzhi crossover. Phys. Rev. B 104, 155305 (2021).
Google Scholar
Nazaryan, K. G. & Levitov, L. Robustness of vorticity in electron fluids. Preprint at https://doi.org/10.48550/arXiv.2111.09878 (2021).
Stern, A. et al. Spread and erase—how electron hydrodynamics can eliminate the Landauer–Sharvin resistance. Preprint at https://doi.org/10.48550/arXiv.2110.15369 (2021).
Andreev, A. V., Kivelson, S. A. & Spivak, B. Hydrodynamic description of transport in strongly correlated electron systems. Phys. Rev. Lett. 106, 256804 (2011).
Google Scholar
Mendoza, M., Herrmann, H. J. & Succi, S. Preturbulent regimes in graphene flow. Phys. Rev. Lett. 106, 156601 (2011).
Google Scholar
Torre, I., Tomadin, A., Geim, A. K. & Polini, M. Nonlocal transport and the hydrodynamic shear viscosity in graphene. Phys. Rev. B 92, 165433 (2015).
Google Scholar
Alekseev, P. S. Negative magnetoresistance in viscous flow of two-dimensional electrons. Phys. Rev. Lett. 117, 166601 (2016).
Google Scholar
Pellegrino, F. M. D., Torre, I., Geim, A. K. & Polini, M. Electron hydrodynamics dilemma: whirlpools or no whirlpools. Phys. Rev. B 94, 155414 (2016).
Google Scholar
Galitski, V., Kargarian, M. & Syzranov, S. Dynamo effect and turbulence in hydrodynamic Weyl metals. Phys. Rev. Lett. 121, 176603 (2018).
Google Scholar
Shytov, A., Kong, J. F., Falkovich, G. & Levitov, L. Particle collisions and negative nonlocal response of ballistic electrons. Phys. Rev. Lett. 121, 176805 (2018).
Google Scholar
Holder, T. et al. Ballistic and hydrodynamic magnetotransport in narrow channels. Phys. Rev. B 100, 245305 (2019).
Google Scholar
Levitov, L. & Falkovich, G. Electron viscosity, current vortices and negative nonlocal resistance in graphene. Nat. Phys. 12, 672–676 (2016).
Google Scholar
Falkovich, G. & Levitov, L. Linking spatial distributions of potential and current in viscous electronics. Phys. Rev. Lett. 119, 066601 (2017).
Google Scholar
Danz, S. & Narozhny, B. N. Vorticity of viscous electronic flow in graphene. 2D Mater. 7, 035001 (2020).
Google Scholar
Gabbana, A., Polini, M., Succi, S., Tripiccione, R. & Pellegrino, F. M. D. Prospects for the detection of electronic preturbulence in graphene. Phys. Rev. Lett. 121, 236602 (2018).
Google Scholar
Meltzer, A. Y., Levin, E. & Zeldov, E. Direct reconstruction of two-dimensional currents in thin films from magnetic-field measurements. Phys. Rev. Appl. 8, 064030 (2017).
Google Scholar
Kiselev, E. I. & Schmalian, J. Boundary conditions of viscous electron flow. Phys. Rev. B 99, 035430 (2019).
Google Scholar
Woods, J. M. et al. Suppression of magnetoresistance in thin WTe2 flakes by surface oxidation. ACS Appl. Mater. Interfaces 9, 23175–23180 (2017).
Google Scholar
Jenkins, A. et al. Imaging the breakdown of ohmic transport in graphene. Preprint at https://doi.org/10.48550/arXiv.2002.05065 (2020).
Gooth, J. et al. Thermal and electrical signatures of a hydrodynamic electron fluid in tungsten diphosphide. Nat. Commun. 9, 4093 (2018).
Google Scholar
Berdyugin, A. I. et al. Measuring Hall viscosity of graphene’s electron fluid. Science 364, 162–165 (2019).
Google Scholar
Kim, M. et al. Control of electron–electron interaction in graphene by proximity screening. Nat. Commun. 11, 2339 (2020).
Google Scholar
Geurs, J. et al. Rectification by hydrodynamic flow in an encapsulated graphene Tesla valve. Preprint at https://doi.org/10.48550/arXiv.2008.04862 (2020).
Choi, Y.-G., Doan, M., Choi, G. & Chernodub, M. N. Pseudo-hydrodynamic flow of quasiparticles in semimetal WTe2 at room temperature. Preprint at https://doi.org/10.48550/arXiv.2201.08331 (2022).
Ali, M. N. et al. Large, non-saturating magnetoresistance in WTe2. Nature 514, 205–208 (2014).
Google Scholar
Wang, P. et al. Landau quantization and highly mobile fermions in an insulator. Nature 589, 225–229 (2021).
Google Scholar
Kumar, N. et al. Extremely high magnetoresistance and conductivity in the type-II Weyl semimetals WP2 and MoP2. Nat. Commun. 8, 1642 (2017).
Google Scholar
Wang, L. et al. Tuning magnetotransport in a compensated semimetal at the atomic scale. Nat. Commun. 6, 8892 (2015).
Google Scholar
Lv, Y.-Y. et al. Experimental observation of anisotropic Adler–Bell–Jackiw anomaly in type-II Weyl semimetal WTe1.98 crystals at the quasiclassical regime. Phys. Rev. Lett. 118, 096603 (2017).
Google Scholar
Ali, M. N. et al. Correlation of crystal quality and extreme magnetoresistance of WTe2. Europhys. Lett. 110, 67002 (2015).
Google Scholar
Wu, Y. et al. Temperature-induced Lifshitz transition in WTe2. Phys. Rev. Lett. 115, 166602 (2015).
Google Scholar
Zhu, Z. et al. Quantum oscillations, thermoelectric coefficients, and the Fermi surface of semimetallic WTe2. Phys. Rev. Lett. 114, 176601 (2015).
Google Scholar
Xiang, F.-X., Veldhorst, M., Dou, S.-X. & Wang, X.-L. Multiple Fermi pockets revealed by Shubnikov–de Haas oscillations in WTe2. Europhys. Lett. 112, 37009 (2015).
Google Scholar
Zhang, Q. et al. Lifshitz transitions induced by temperature and surface doping in type‐II Weyl semimetal candidate Td‐WTe2. Phys. Status Solidi Rapid Res. Lett. 11, 1700209 (2017).
Google Scholar
Luo, Y. et al. Hall effect in the extremely large magnetoresistance semimetal WTe2. Appl. Phys. Lett. 107, 182411 (2015).
Google Scholar
Kirtley, J. R., Tsuei, C. C. & Moler, K. A. Temperature dependence of the half-integer magnetic flux quantum. Science 285, 1373–1375 (1999).
Google Scholar
Kalisky, B. et al. Behavior of vortices near twin boundaries in underdoped Ba(Fe1−xCox)2As2. Phys. Rev. B 83, 064511 (2011).
Google Scholar
Embon, L. et al. Probing dynamics and pinning of single vortices in superconductors at nanometer scales. Sci. Rep. 5, 7598 (2015).
Google Scholar
Kremen, A. et al. Mechanical control of individual superconducting vortices. Nano Lett. 16, 1626–1630 (2016).
Google Scholar
Embon, L. et al. Imaging of super-fast dynamics and flow instabilities of superconducting vortices. Nat. Commun. 8, 85 (2017).
Google Scholar
Zhang, I. P. et al. Imaging anisotropic vortex dynamics in FeSe. Phys. Rev. B 100, 024514 (2019).
Google Scholar
Anahory, Y. et al. SQUID-on-tip with single-electron spin sensitivity for high-field and ultra-low temperature nanomagnetic imaging. Nanoscale 12, 3174–3182 (2020).
Google Scholar
Huber, M. E. et al. DC SQUID series array amplifiers with 120 MHz bandwidth. IEEE Trans. Appl. Supercond. 11, 1251–1256 (2001).
Google Scholar
Finkler, A. et al. Self-aligned nanoscale SQUID on a tip. Nano Lett. 10, 1046–1049 (2010).
Google Scholar
Finkler, A. et al. Scanning superconducting quantum interference device on a tip for magnetic imaging of nanoscale phenomena. Rev. Sci. Instrum. 83, 073702 (2012).
Google Scholar
Halbertal, D. et al. Nanoscale thermal imaging of dissipation in quantum systems. Nature 539, 407–410 (2016).
Google Scholar
Broadway, D. A. et al. Improved current density and magnetization reconstruction through vector magnetic field measurements. Phys. Rev. Appl. 14, 024076 (2020).
Google Scholar
Guerrero-Becerra, K. A., Pellegrino, F. M. D. & Polini, M. Magnetic hallmarks of viscous electron flow in graphene. Phys. Rev. B 99, 041407 (2019).
Google Scholar
Hasdeo, E. H., Ekström, J., Idrisov, E. G. & Schmidt, T. L. Electron hydrodynamics of two-dimensional anomalous Hall materials. Phys. Rev. B 103, 125106 (2021).
Google Scholar
Guo, H., Ilseven, E., Falkovich, G. & Levitov, L. S. Higher-than-ballistic conduction of viscous electron flows. Proc. Natl Acad. Sci. USA 114, 3068–3073 (2017).
Google Scholar
Müller, M., Schmalian, J. & Fritz, L. Graphene: a nearly perfect fluid. Phys. Rev. Lett. 103, 2–5 (2009).
Principi, A., Vignale, G., Carrega, M. & Polini, M. Bulk and shear viscosities of the two-dimensional electron liquid in a doped graphene sheet. Phys. Rev. B 93, 125410 (2016).
Google Scholar
Scaffidi, T., Nandi, N., Schmidt, B., Mackenzie, A. P. & Moore, J. E. Hydrodynamic electron flow and Hall viscosity. Phys. Rev. Lett. 118, 226601 (2017).
Google Scholar
Svintsov, D. Hydrodynamic-to-ballistic crossover in Dirac materials. Phys. Rev. B 97, 121405 (2018).
Google Scholar
Burmistrov, I. S., Goldstein, M., Kot, M., Kurilovich, V. D. & Kurilovich, P. D. Dissipative and Hall viscosity of a disordered 2D electron gas. Phys. Rev. Lett. 123, 26804 (2019).
Google Scholar
Ledwith, P., Guo, H., Shytov, A. & Levitov, L. Tomographic dynamics and scale-dependent viscosity in 2D electron systems. Phys. Rev. Lett. 123, 116601 (2019).
Google Scholar
Narozhny, B. N. & Schütt, M. Magnetohydrodynamics in graphene: Shear and Hall viscosities. Phys. Rev. B 100, 035125 (2019).
Google Scholar
Alekseev, P. S. & Dmitriev, A. P. Viscosity of two-dimensional electrons. Phys. Rev. B 102, 241409 (2020).
Google Scholar
Toshio, R., Takasan, K. & Kawakami, N. Anomalous hydrodynamic transport in interacting noncentrosymmetric metals. Phys. Rev. Res. 2, 032021 (2020).
Google Scholar
Narozhny, B. N., Gornyi, I. V. & Titov, M. Hydrodynamic collective modes in graphene. Phys. Rev. B 103, 115402 (2021).
Google Scholar
Alekseev, P. S. et al. Counterflows in viscous electron-hole fluid. Phys. Rev. B 98, 125111 (2018).
Google Scholar
Alekseev, P. S. et al. Nonmonotonic magnetoresistance of a two-dimensional viscous electron-hole fluid in a confined geometry. Phys. Rev. B 97, 085109 (2018).
Google Scholar
Dell’Anna, L. & Metzner, W. Fermi surface fluctuations and single electron excitations near Pomeranchuk instability in two dimensions. Phys. Rev. B 73, 045127 (2006).
Google Scholar